Document Type: Original Research Article


1 Department of Inorganic Chemistry, Faculty of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran

2 Department of Inorganic Chemistry, Faculty of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran.

3 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran


The study examined surface adsorption of fullerene C60 with anticancer drug procarbazine in gas and solvent (water) phases using the DFT method. In doing so, the structure of the procarbazine, fullerene and their derivatives were first geometrically optimized in three different configurations with a base set of 6-31 g * and B3LYP hybrid functions. Then, IR calculations, frontier molecular orbital, and molecular-based orbital analysis studies were performed on them. Additionally, thermodynamic parameters calculated including Gibbs free energy variation (ΔGad), erythrocyte formation (ΔHad) and thermodynamic properties (K) indicated that the reaction of procarbazine with fullerene C60 is thermal, spontaneous, one-way and non-equilibrium. The effect of temperature on this substituent reaction was also examined and the results proved that at the temperature 314.15 K, the formation process would be best. The results of the computations showed that the results of the analysis of molecular orbitals indicate that the reactivity, electrophilicity, and conductivity of procarbazine are reduced after the substituent reaction. Computational examination of surface adsorption of procarbazine and fullerene C60 nanostructures anticancer drugs using density functional theory (DFT) method

Graphical Abstract


Main Subjects

[1] L. Szabos, A. Savoure, Trends. Plant. SCI., 2010, 15, 89-97.

[2] L.K. Liu, D.F. Becker, J.J. Tanner, Arc. Biochem. Biophys., 2017, 632, 147-157.

[3] M.M. Gomez, R. Motila, E. Diez, Electrochim. Acta., 1989, 34, 831-839.

[4] L.G. Heller, E.R. Kirch, J. Am. Pharm. Assoc., 1947, 36, 345-349.

[5] P. Chang, Z. Zhang, C. Yang, Anal. Chim. Acta., 2010, 666, 70-75.

[6] J.W. Costin, N.W. Barnett, S.W. Lewis, Talanta., 2004, 64, 894-898.

[7] H. Zheng, Y. Hirose, T. Kimura, S. Suye, T. Hori, H. Katayama, J. Arai, R. Kawakami, T. Ohshima, Sci. Tech. Adv. Mater., 2006, 7, 243-248.

[8] C. Truzzi, A. Annibaldi, S. Illuminati, C. Finale, G. Scarponi, Food. Chem., 2014, 150, 477-481.

[9] M. Nabati, M.S. Kermanian, H. Mohammadnejad-Mehrabani, H. Rahbar Kafshboran, M. Mehmannavaz, S. Sarshar, Chemical Methodologies., 2018, 2, 128-140.

[10] A. Bahrami, S. Seidi, T. Baheri, M. Aghamohammadi, Superlattices. Micrstruct., 2013, 64, 265-273.

[11] M.D. Esrafili, Phys. Lett., 2017, 381, 2085-2091.

[12] A. Vinu, T. Mori, K. Ariga, Sci. Technol. Adv. Mater., 2006, 7, 753-771.

[13] A. Soltani, M.T. Baei, M. Mirarab, M. Sheikhi, E.T. Lemeshki, J. Phys. Chem. Solids., 2014, 75, 1099-1105.

[14] S.A. Siadati, M.S. Amini-Fazl, E. Babanezhad, Sens. Actuators. B. Chem., 2016, 237, 591-596.

[15] R. Rahimi, S. Kamalinahad, M. Solimannejad, Mater. Res. Express., 2018, 5, 1-17.

[16] P. Pakravan, S.A. Siadati, J. Mol. Graph. Model., 2017, 75, 80-84.

[17] M.T. Baei, Heteroatom. Chem., 2013, 24, 516-523.

[18] M. Soleymani, H.D. Khavidaki, Comput. Theor. Chem., 2017, 1112, 37-45.

[19] R. Ahmadi, M.R. Jalali Sarvestani, Phys. Chem. Res., 2018, 6, 639-655.

[20] M.R. Jalali Sarvestani, R. Ahmadi, Int. J. New. Chem., 2018, 4, 400-408.

[21] M.R. Jalali Sarvestani, R. Ahmadi, Int. J. New. Chem., 2018, 5, 409-418.

[22] R. Ahmadi, M.R. Jalali Sarvestani, Int. J. Bio-Inorg. Hybrid. Nanomater., 2017, 6, 239-244.

[23] R. Ahmadi, Int. J. Nano. Dimens., 2017, 8, 250-256.

[24] M.R. Jalali Sarvestani, L. Hajiaghbabaei, J. Najafpour, S. Suzangarzadeh, Anal. Bioanal. Electrochem., 2018, 10, 675-698.

 [25] W. Schnelle, R. Fischer, J. Gmelin, J. Phys. D. Appl. Phys., 2001, 34, 846-851.

[26] Z. Javanshir, S. Jameh-Bozorghi, P. Peyki, Adv. J. Chem. A., 2018, 1, 117-126.

[27] R. Ahmadi, M.R. Jalali Sarvestani, Iranian Chemical Communication, 2019, 7, 344-351.