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Abstract

Quantitative structure-activity relationship (QSAR) models were employed to predict

the activity of P2X7 receptor antagonists. A data set consisted of 50 purine

derivatives was utilized in the model construction where 40 and 10 of these

compounds were in the training and test sets respectively. A suitable group of

calculated molecular descriptors was selected by employing stepwise multiple linear

regressions (SW-MLR) and genetic algorithm-multiple linear regressions (GA-MLR)

as variable selection tools. The proposed MLR models were fully confirmed applying

internal and external validation techniques. The obtained results of this QSAR study

showed the superiority of the GA-MLR model over the SW-MLR model. As a result,

the obtained GA–MLR model could be applied as a valuable model for designing

similar groups of P2X7 receptor antagonists.
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Introduction

P2X7 receptor, a plasma membrane

receptor for extracellular adenosine-5-

triphosphate (ATP) predominantly

explained in inflammation relevant

cells, has been known as an important

regularizer of both IL-1 maturation and

externalization [1-3]. Activation of

P2X7 receptors results in two distinct

responses, depending on the exposure
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time to agonist. A brief excitation of the

receptor by extracellular ATP leads to

opening membrane channel permeable

to small cations (Na+ ,Ca2+, K+ ) [4-6].

P2X7 receptor is implicated in the

regulation, expression and secretion of

cytokines and inflammatory mediators

including interleukins (IL-1) [2], IL-2,

[7], IL-18 [8] and tumor necrosis

factor-α [9]. Notably, the P2X7 receptor

plays an essential role in the processing

and release of pro-inflammatory

cytokine IL-1β in the immune system

by a complex sequence of events.

Initially, the activated P2X7 receptor

causes the reduction of K+ that leads to

the excitation of IL-1β converting

enzyme (caspase-1), and further convert

LPS-activated pro-IL-1β to mature IL-

1β [2]. Due to the presence of P2X7

receptors on cells of immune system

(macrophages, microglia, etc.) and the

relationship between P2X7 activation

and cytokine or glutamate release, this

receptor may play an important role in

the development and progression of

various disease states or conditions

such as chronic inflammation [10-11],

neurodegeneration [12-15], and chronic

pain [16-17]. Therefore, the

development of antagonists of the P2X7

receptor could be a therapeutic strategy

to treat inflammatory diseases.

Several P2X7 receptor antagonists

with diverse scaffolds have been

discovered so far. Till date no P2X7

receptor antagonist reached into the

market ultimately as a drug due to lack

of potency and efficacy. The analogous

molecules have now been discontinued

because of lack of efficacy [8].

Therefore, there is still a need to

identify and develop clinically effective

and well tolerated P2X7 receptor

antagonists.

Nowadays, there is a growing

interest to use the computational

approaches in predicting the activities

of new chemical structures before

synthesis. Among the computational

methods, quantitative structure-activity

relationship (QSAR) is a well known

method to describe the chemical

structures-biological activities

interactions [18-24]. The first step, also

the most important step in construction

the QSAR models is the choice of a

series of molecular descriptors with the

higher effect on the biological activity

[25].

Recently, some QSAR studies have

been reported about the p2x7 receptor

antagonists activities [26-27]. In the
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present study, multiple linear regression

(MLR) technique along with stepwise

(SW) and genetic algorithm (GA)

variable selection methods were used

for generating the QSAR models [28].

The impetus of the present study is to

propose and develop a novel QSAR

model to predict the antagonist potency

of purine derivatives as P2X7 receptors.

Materials and Methods

Data set

In this QSAR study, a dataset consisted

of 50 compounds of purine derivatives

as P2X7 receptors antagonists, was

collected from the literature [29-30].

The chemical structures and activity

data for whole compounds are given in

Table 1. The activity data as IC50 (nM)

values for the total compounds were

converted to logarithmic scale pIC50

(M) and then applied for QSAR

analysis as the dependent variables. The

whole dataset were accidentally

separated into two training and test sets

in which 40 and 10 compounds were

obtained for each set respectively. The

test set was applied to determine the

predictive ability of the created model

based on training set [31].

Descriptors calculation

The second dimensional structures were

constructed in Hyperchem 7.0 software

and these structures were optimized

using molecular mechanics force field

(MM+) and semi-empirical (AM1)

methods with the root mean square

gradient of 0.01 kcal mol-1. Calculation

of molecular descriptors for each

compound of data set has been

followed by using the Dragon 2.1

software. Totally, 1497 different

molecular descriptors were generated

for each compound. In order to

decrease the redundancy existing in the

descriptors data matrix, the correlations

of descriptors with each other and with

pIC50 of the molecules are examined,

and collinear descriptors (R > 0.9) are

detected. Those of the descriptors

which have the pair wise correlation

coefficient above 0.9 and having the

lower correlation with pIC50 values are

removed from the data matrix. They

were excluded in the pre-reduction step

and 387 descriptors were left for

variable selection.

Genetic algorithm (GA)

Choosing appropriate descriptors for

QSAR studies is difficult, because there

are no absolute rules that govern this

choice. In other words, the problem is

to choose the best possible group of

descriptors from all present descriptors

that can predict with minimum error in
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comparison to the experimental data. A

generally accepted method for this

problem is genetic algorithm-based

multiple linear regression (GA-MLR).

Genetic algorithm is a random

optimization procedure that imitates

selection in nature and has been

demonstrated to be a very useful tool in

QSAR studies with many merits [32].

In this research, GA-MLR was

employed to establish a QSAR model.

The fitness function applied in this

research was the leave-one-out cross-

validated correlation coefficient

(Q2
LOO). The GA-MLR program is

implemented in Matlab 6.5 software

[33].

Table 1. Chemical structures and the corresponding experimental and predicted pIC50 values

by GA-MLR method

NO. R R1 R2 Fluorine substitution
pattern on benzyl ring

Exp
.

Pred
.

N

N
N

N

F

R

O

N

H

1 Et - - -
5.5

6
5.53

N

NN
N

N

R

F

H

O
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NO. R R1 R2 Fluorine substitution
pattern on benzyl ring

Exp
.

Pred
.

2 3F,4FPh - - -
6.5

3
6.70

3 2F,4FPh - - -
6.0

5
6.04

4a 4FPh - - -
6.2

1
6.29

5 3F,5FPh - - -
6.3

4
6.26

6 3,4,5-TriF-Ph - - -
6.5

6
6.33

N

N
N

N

N

F

R1

O

R2

F

F

7 - Butyl H -
6.2

1
6.50

8 - H -
6.6

1
6.69

9 - H -
6.4

8
6.28

10a - Me Me -
6.4

3
6.87
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NO. R R1 R2 Fluorine substitution
pattern on benzyl ring

Exp
.

Pred
.

N

NN

H

N

N

F

F

O

R

11a 4-CF3OPh - - -
6.6

5
6.59

12 3-CF3OPh - - -
6.5

5
6.67

13 4CN-Ph - - -
6.6
5

6.60

14 4CN,3F-Ph - - -
6.7

9
6.70

15

N

F
- - -

6.6
2

6.48

16

N

NC
- - -

6.8
3

7.01

17

N

F3C
- - -

7.0
9

7.23

18

N

N - - -
6.9

4
6.84
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NO. R R1 R2 Fluorine substitution
pattern on benzyl ring

Exp
.

Pred
.

19a

N
N

O

- - -
7.0

4
7.06

20

N
N

O

O

- - -
7.2

5
7.0

21

N
N

O

F

F

- - -
7.2

8
7.41

22
N

N

O
F

F - - -
7.4

2
7.47
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NO. R R1 R2 Fluorine substitution
pattern on benzyl ring

Exp
.

Pred
.

N

NN
N

H

O

N

F

23 - - - 3,4
6.7

5
6.73

24a - - - 2
6.0

3
6.05

25 - - - 3
6.5

7
6.62

26 - - - 4
6.6

3
6.90

27 - - - 2,3
6.0

6
6.15

28 - - - 2,4
6.0

7
6.23

29 - - - 2,5
5.9

8
5.92

30 - - - 3,5
6.9

7
6.52

N

NN
N

N

R1
R2

O

F

31 - Me Me 3,4 7.0 7.25
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NO. R R1 R2 Fluorine substitution
pattern on benzyl ring

Exp
.

Pred
.

7

32 -
Cyclohexy

l
- 3,4

6.4
1

6.56

33a - Me Me 3,4
6.9

7
7.23

34a - Me Me 4
6.5

6
6.70

35 - Me Me 2,4
6.1

5
6.11

36 - Me Me 3,5
7.0

4
7.19

N

N
N

N

N

F

F

N

O

R

37 - H - -
7.6

2
7.29

38a - 2-Fluoro - -
7.2

8
6.91

39 - 2-Methoxy - - 7.0 7.16

40a - 3-Methyl - -
7.6

0
7.41

41 -
3-Trifluoro

methyl
- -

6.9
8

7.08

42 - 3-Fluoro - -
7.5

5
7.28

43 - 3-Trifluoro - -
6.9

6
6.67
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NO. R R1 R2 Fluorine substitution
pattern on benzyl ring

Exp
.

Pred
.

methoxy

44 - 4-Methyl - -
7.4

1
7.15

45a -
4-Trifluoro

methyl
- -

6.8
6

6.62

46 - 4-Fluoro - -
7.3

5
7.28

47 - 4-Methoxy - -
7.3

0
7.32

48 -
4-Trifluoro

methoxy
- -

5.7
1

6.41

49 - 2,4-Difluoro - -
7.0

2
6.86

50 - 3,5-Difluoro - -
7.2

6
7.22

aTest set

Results and discussion

For choosing training and test sets, the

compounds are sorted from low to high

experimental activity values. Then the

whole data set was haphazardly

partitioned into a training set

(containing 40 compounds) and a test

set (containing 10 compounds) with

proportion 80% and 20%, respectively.

Both sets are demonstrated in Table 1.

For the selection of the most relevant

descriptors, stepwise variable selection

method was applied. Finally, SW–MLR

model based on training set and using

the chosen descriptors was created, and

the following linear equation was

obtained:

pIC50= -3.077(2.40) -46.511(12.350)

JGI6 +133.295(25.231) JGI10

+0.834(0.085) Mor09m -

6.481(0.828) R8m

+138.424(32.706) JGI9

+83.597(15.915) G1m

+0.052(0.010) RDF070m

(1)

Ntrain= 40, R2
train= 0.906, R2

test= 0.239,

R2
adj= 0.885, Ftrain= 43.859, Ftest= 0.330,

RMSEtrain= 0.154, RMSEtest= 0.597,

Q2
LOO= 0.855, Q2

LGO=0.843,

Q2
BOOT=0.844
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In the above equation, N is the

number of chemical compounds

available in training set, R2 is the

squared correlation coefficient, R2
adj is

adjusted R2, RMSE is the root mean

square error, F is the Fisher F statistic

and Q2
LOO, Q2

LGO and Q2
BOOT show the

squared cross-validation coefficients for

leave one out, leave group out and

bootstrapping, respectively. The

obtained statistical parameters indicated

that the SW-MLR model created

acceptable results for the training set,

but it did not create satisfactory results

for the test set. Therefore, the genetic

algorithm method was applied to select

the best subset of descriptors. The GA-

MLR model and its statistical

parameters are presented as:

pIC50= 8.383(±0.718) -73.224(±16.384)

JGI6 +252.521(±28.016) JGI9 -

0.068(±0.018) RDF085p -

0.492(±0.072) Mor04m -

5.978(±1.063) R8m -

35.464(±8.806) R5e+ (2)

Ntrain= 40, R2
train= 0.833, R2

test= 0.755,

R2
adj= 0.802, Ftrain= 27.385, Ftest= 1.499,

RMSEtrain= 0.206, RMSEtest = 0.228,

Q2
LOO= 0.762, Q2

LGO= 0.676, Q2
BOOT=

0.734

As can be seen, the statistical

parameters obtained by GA–MLR

model demonstrate the acceptable

results for both training and test sets.

The GA-MLR model with six selected

descriptors was applied to predict the

activity values. The experimental and

predicted values for pIC50, were

provided in Table 1. The plot of the

predicted activities against the

experimental activities was indicated in

Figure 1. As can be seen from Table 1

and Figure 1, the calculated values of

pIC50 are in good agreement with the

experimental values.

The multi-collinearity, among

descriptors available in model, was

inspected by calculating the variation

inflation factors (VIF) as below:

VIF
21

1

r
 (3)

In above formula, r is correlation

coefficient of multiple regressions

among one descriptor with other

descriptors in the QSAR model. A VIF

equal to 1 displays that there is not any

relationship among descriptors; if VIF

value states among 1 to 5, it shows that

proposed model is acceptable, and VIF

greater than 10 means that the obtained

model is not proper [22]. The multi-

collinearity results are shown in Table

2. As is obvious in Table 2, the

obtained VIF values for the most
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descriptors are less than 5, which

means, that the descriptors used in GA-

MLR model are fairly independent of

each other.

Table 2. The linear model based on the six descriptors selected by GA-MLR method

Descriptors coefficients Std.Error MFa VIFb Chemical meanings

Constant 8.383 0.718 0 0 -

JGI6 -73.224 16.384 1.742 1.938 Mean topological charge index of order6

JGI9 252.521 28.016 -2.475 1.359 Mean topological charge index of order9

RDF085p -0.068 0.018 0.503 1.846 Radial Distribution Function - 085 / weighted by
atomic polarizabilities

Mor04m -0.492 0.072 -0.854 1.908 3D-MoRSE - signal 04 / weighted by atomic
masses

R8m -5.978 1.063 1.462 3.058 R autocorrelation of lag 8 / weighted by atomic
masses

R5e+ -35.464 8.806 0.622 1.122 R maximal autocorrelation of lag 5 / weighted
by atomic Sanderson electronegativities

aMean effect
bVariation inflation factors

Also, the correlation coefficient

matrix of pair selected descriptors is

shown in Table 3. A check of Table 3

indicates that the highest correlation

coefficient value between pairwise

descriptors is smaller than 0.57, which

means that these descriptors are not

highly dependent on each other. The

mean effect (MF) value is applied to

estimate the relative importance and

also the contribution of each descriptor

in model. This parameter demonstrates

the relative importance of a descriptor

in comparison to the other selected

descriptors in the model. The MF sign

indicates the variation direction in the

values of the dependent variable as a

result of the increase or decrease in the

independent variables values [24]. The

MF values are presented in Table 2.

The leave one out and leave group out

cross-validation techniques used to

assessment the predictive power of the

created models. In order to appraise the

robustness and predictive ability of the

models, Q2
BOOT is also calculated based

on bootstrapping repeated 5000 times

[34]. The cross-validation results
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indicate that the created GA-MLR

model is a valid model so; it can be

applied to calculate the activity values

of the P2X7 receptor antagonists.

Table 3. Correlation coefficient matrix of the selected descriptors by GA-MLR

JGI6 JGI9 RDF085p Mor04m R8m R5e+

JGI6 1 0 0 0 0 0

JGI9 -0.08 1 0 0 0 0

RDF085p -0.17 -0.09 1 0 0 0

Mor04m -0.55 0.16 -0.03 1 0 0

R8m 0.57 0.19 -0.54 -0.48 1 0

R5e+ 0.29 0.19 -0.07 -0.16 0.17 1

The Williams plot, the plot of the

standardized residuals (δ) against hat

values (h), is applied to determining the

applicability domain (AD) of the

obtained GA-MLR model [35]. The

leverage of a compound in the original

variable space is defined as:

  i
TT

ii xXxh
1

 (4)

Where xi is the descriptor vector of the

considered compound and X is the

descriptor matrix derived from the

training set descriptor values. The

warning leverage (h*) is defined as:

n

p
h

3


(5)

Where n is the number of

calibration compounds, p is the number

of model variables plus one. The

leverage (h) greater than the warning

leverage (h*) suggested that the

compound was very influential on the

model. Moreover, a value of 3 for

standardized residual is commonly used

as a cut-off value for accepting

predictions, because points that lie ±3

standardized residual from the mean

cover 99% of normally distributed data.

The Williams plot (Figure 2)

indicates that only one compound (No.

29 in the training set) has the leverage

(h) more than the warning h∗ value of

0.53, thus it can be considered as

structural outlier (X outlier). Also in

this Figure, there is one compound (No.

48 in the training set) with standard

residuals >3δ. Thus compound number

48 can be considered as response

outlier (Y outlier).
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In order to further appraise the

robustness of the model generated by

the GA-MLR procedure, Y-

randomization test was utilized [31]. In

this test, the activity values for set of

molecules was shuffled randomly and

after several replications the

constructed model indicated to have

less value for R2 and Q2
LOO values

(Table 4).

Figure1. The predicted pIC50 values by the GA-MLR modeling against the experimental

pIC50 values

Table 4. R2
train and Q2

LOO values after
several Y-randomization tests

No Q2 R2

1 0.002 0.153

2 0.003 0.223

3 0.117 0.339

4 0.022 0.114

5 0.002 0.139

6 0.084 0.073

7 0.307 0.038

8 0.016 0.127

9 0.017 0.194

10 0.131 0.360

Interpretation of descriptors

Analysis of the descriptors contained in

the GA–MLR model can provide better

insights to design some new

compounds with higher activities. The

brief descriptions of the selected

descriptors are presented in Table 2.

The first two descriptors are JGI6

(Mean topological charge index of

order 6) and JGI9 (Mean topological

charge index of order 9) which belong

to the Galvez topological charge

indices. These descriptors explain
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charge transfer among pairs of atoms

and therefore global charge transfer in a

molecule [36]. In Table 2, JGI 6

coefficient has negative sign which

suggests that the pIC50 value is

contrariwise related to this descriptor.

The positive coefficient sign and the

highest mean effect value for JGI9

illustrates that this descriptor has a

direct and significant effect on the

pIC50 value of the studied compounds.

The third appearing descriptors in

the model is RDF085p (Radial

Distribution Function - 085 / weighted

by atomic polarizabilities) which

belong to the radial distribution

function (RDF) descriptors. RDF in

this form meets all the requirements for

the 3D structure descriptors. It is

independent of the atom number (i. e.

the size of a molecule), and is unique

regarding the three-dimensional

arrangement of the atoms and also it is

constant versus the translation and

rotation of the whole molecule. In

addition, these descriptors can be

limited to specific atom types or

distance ranges to demonstrate specific

information in a certain three-

dimensional structure space (e.g. to

describe the steric hindrance or the

structure / activity properties of a

molecule) [37]. In this descriptor,

weighting scheme is the atomic

polarizabilities which illustrate that the

polarizabilities of the molecule atoms

play a significant role in RDF085p

descriptor. The RDF085p coeeficient

has a negative sign, which illustrates

that this descriptor has negative effect

on the pIC50 value, which means that

increasing the value of above descriptor

with increasing the atomic

polarizabilities for each compound

atoms, the pIC50 value is reducing.

The Mor04m (3D-MoRSE - signal

04 / weighted by atomic masses) is a

type of the 3D-MoRSE descriptors. 3D-

MoRSE descriptors (3D Molecule

Representation of Structures based on

Electron diffraction) are obtained from

Infrared spectra simulation applying a

generalized scattering function [35].

The negative sign of Mor04m

descriptor in Table 2 illustrates that

with increasing atomic masses will

decrease the pIC50 value.

The next two descriptors are R8m

(R autocorrelation of lag 8 / weighted

by atomic masses) and R5e+ (R

maximal autocorrelation of lag 5 /

weighted by atomic Sanderson

electronegativities) that are belong to

the Getaway descriptors. GETAWAY
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descriptors are based on a leverage

matrix similar to that determined in

statistics and the most commonly

applied for regression diagnostics.

These molecular descriptors try to

match 3D-molecular geometry provided

by the molecular influence matrix and

the atom relatedness by molecular

topology, with chemical information by

using various atomic weights (atomic

mass, polarizability, van der Waals

volume and electronegativity, etc.) [38].

The negative signs of R8m and R5e+

descriptors indicate that the pIC50 value

is contrariwise related to these

descriptors.

As a summary of the above

discussion, we can conclude that the

mean topological charge index, the

atomic polarizabilities, the atomic

masses and the atomic Sanderson

electronegativities of molecules play an

important role in antagonist potency of

purine derivatives as P2X7 receptor.

Figure 2. The Williams plot of GA-MLR model for the training and test sets

Conclusion

In this study, multiple linear regressions

as a simple and very fast technique

were applied to build a quantitative

relation between the molecular

structures and biological activity of

purine derivatives. Stepwise and

genetic algorithm, were used as

powerful methods to select the best

descriptors. The stability, robustness

and predictive strength of the created

linear models were confirmed utilizing
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cross-validation (leave-one-out and

leave-group-out), external test set and

Y-randomization procedures.

Comparison among the obtained data

for models demonstrated that GA-MLR

is a premier model with acceptable

statistical quality and low relative

errors. Therefore, the developed GA-

MLR model can be useful to calculate

the activity values of novel derivatives,

and design of new P2x7 receptors.
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