Document Type : Original Research Article

Authors

Department of Chemistry, University of Tabriz, Tabriz +98 4113393138, Iran

Abstract

Composite electrodes of polyaniline/MnO2-Multi walled carbon nanotube (PANI/MnO2-MWCNT), MnO2-MWCNT nanocomposites and MWCNT was produced by the in situ direct coating approach. The supercapacitor performance of the nanocomposites was studied by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of electrodes were also investigated by cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS) techniques in 0.5 M Na2SO4. The specific capacitance of 321.47 F. g-1, 277.77 F. g-1 and 80 F. g-1 obtained for PANI/MnO2-MWCNT, MnO2-MWCNT and MWCNT, respectively. The EIS results also showed that the capacitive behavior of MWCNT was improved by the addition of MnO2 and PANI.

Graphical Abstract

Performance of polyaniline/manganese oxide-MWCNT Nanocomposites as Supercapacitors

Keywords

Main Subjects

[1] S. Kumar Mehr, P. Justin, G. RangaRao, Appl. Mat. And Interfaces, 2011, 3, 2063-2073.
[2] C.H. Yang, Y.S. Jang, H.K. Jeong, Curr. Appl. Phys., 2014, 14, 1616-1620.
[3] B.E. Conway, J Electrochem. Soc., 1991, 138, 1539-1542.
[4] B. Lee, J.R. Yoon, Curr. Appl. Phys., 2013, 13, 1350-1353.
[5] F.J. Liu, T.F. Hsu, H. Yang, J. Power Sources, 2009, 191, 678-683.
[6] H.R. Ghennaatian, M.F. Mousavi, S.H. Kazemi, M. Shamsipur, Syth. Met., 2009, 159, 1717-1722.
[7] Y.J. Lee, S. Park, J.G. Seo, J. R. Yoon, J. Yi, I.K. Song, Curr. Appl. Phys., 2011, 11, 631-635.
[8] J. Liu, J. Essner, J. Li, Chem. Mater., 2010, 22, 5022-5030.
[9] L. Mei, T. Yang, C. Xu, M, Zhang, L. Chen, Q. Li, T. Wang, Nano Energy, 2014, 3, 36-45.
[10] X. Zhang, L. Ji, S. Zhang, W. Yang, J. Power Sources, 2007, 173,1017-1023.
[11] E.N. Konyushenko and N.E. Kazantseva, J. Stejskal et al., J Magnetism Magnetic Mater, 2008, 320, 231-240.
[12] A. Rudge, I. Raistrick, S. gottesfeld and J.P. Ferraris, Electrochim. Acta, 1994, 39, 273-287.
[13] K.W. Nam, C.W. Lee, X.Q. Yang, B.W. Cho, W.S. Yoon, K.B. Kim, J. Power Sources, 2009, 188, 323-331.
[14] H. Ashassi-Sorkhabi, E. Asghari, P. La, le Badakhshan, Curr. Appl. Phys., 2014, 14, 187-191.
[15] J.M. Ko, K.M. Kim, Mater. Chem. Phys., 2009, 114, 837-841.
[16] P. Sen, A. De, Electrochim. Acta, 2010, 55, 4677-4684.
 [17] A.E. Fischer, M.P. Saunders, K.A. Pettigrew, D.R. Rolison, J.W. Long, J Electrochem. Soc., 2008, 155, A246-A252.
[18] J. Wei, I. Zhitomirsky, Sur. Eng., 2008, 24, 40-46.
[19] M. Cheong, I. Zhitomirsky, Sur. Eng., 2009, 25, 346-352.
[20] J. Wang, Y. Yang, Z.H. Huang, F. Kang, Electrochim. Acta, 2012, 75, 213-219.
[21] S.I. Cho, S.B. Lee, Dekker Encyclopedia of Nanoscience and Nanotechnology, 2005, 1, 1-7.
[22] Z.A. Hu, Y.L. Xie, Y.X. Wang, H.Y. Wu, Y.Y. Yang, Z.Y. Zhang, L.P. Mo, Mater. Chem. and Phys., 2009, 114, 990-995.
[23] K.S. Kim, S.J. Park, J. of Solid State Electrochem., 2012, 16, 2751-2758.
[24] A. Mirmohseni, M.S. Seyed Dorraji, M.G. Hosseini, Electrochim. Acta., 2012, 70, 182-192.
[25] Y.T. Wang, A.H. Lu, H.L. Zhang, , W.C. Li, The J. of  Phys. Chem. C, 2011, 115, 5413-5421.
[26] P. Lv, P. Zhang, F. Li, Y. Feng, W. Feng, Synthetic Met., 2012, 162, 1090-1096.
[27] A.M.P. Hussain, A. Kumar, J. Power Sources, 2006, 161, 1486-1492.
[28] J. Zhang, D. Shu, T. Zhang, H. Chen, H. Zhao, Y. Wang, Z. Sun, S. Tang, J. of Alloys and Compd., 2012, 532, 1-9.
[29] Y. Li, K. Huang, D. Zeng, S. Liu, Z. Yao, J. of Solid State Electrochem, 2010, 14, 1205-1211.
[30] F. Gobal, M. Faraji, Electrochim. Acta, 2013, 100, 133-139.
[31] C.S. Hsu, F.Mansfeld, Corrosion, 2001, 57, 747-755.