TY - JOUR ID - 2113 TI - Physico-chemical features of Aqueous extract of acanthophyllum laxiusculum roots from natural steppe habitats of Iran: Evaluating surface activity and thermal behavior of partially purified extract JO - Iranian chemical communication JA - ICC LA - en SN - 2423-4958 AU - Soltaninejad, Hajar AU - Madadi, Zahra AU - Bagheri Lotfabad, Tayebe AU - Pirani, Atefeh AU - Ebadipour, Negissa AD - Department of Energy and Environmental Biotechnology, Institute of Industrial and Environmental Biotechnology(IIEB), National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran AD - Department of Energy and Environmental Biotechnology, Institute of Industrial and Environmental Biotechnology(IIEB), National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran AD - Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Y1 - 2016 PY - 2016 VL - 4 IS - Issue 3, pp. 236-358, Serial No. 12 SP - 236 EP - 244 KW - Acanthophyllum laxiusculum KW - saponin KW - plant KW - critical micelle concentration DO - N2 - Acanthophyllum laxiusculum is one of the most widely distributed species of the genus in Iran that flourishes in steppe and mountainous regions of the country. In the present study, water-soluble content of A. laxiusculum roots was extracted by boiling water and further successively purified partially by a defined solvent system. Surface tension measurements revealed the ability of plant extract to decrease the surface tension of water from 72 to 38mN/m with a critical micelle concentration (CMC) of 87.3 mg/l. The partially purified natural extract (PPNE) exhibited 65% emulsification activity (E24) on kerosene. A combination of UV–VIS spectroscopy and Fourier transform infrared spectroscopy (FTIR) demonstrated the presence of saponin compounds in PPNE. Moreover, thermostability of PPNE was evaluated by thermal gravimetric analysis (TG) and differential thermal analysis (DTA). TG-DTG analysis showed a complex three-stage thermal degradation mechanism and this conclusion was also supported by the DTA spectrum. UR - https://icc.journals.pnu.ac.ir/article_2113.html L1 - https://icc.journals.pnu.ac.ir/article_2113_eb627be368422e0ef64e0adbe290a4e3.pdf ER -