Document Type : Original Research Article

Authors

1 Department of Chemistry, College of Sciences, University of Birjand, Birjand 97175-615, Iran

2 Department of Chemistry, College of Sciences, Birjand University, Birjand 97175-615, Iran

Abstract

Quinolines, an important class of potentially bioactive compounds, have been synthesized by treatment of O-aminoarylketones and carbonyl compounds utilizing niobium (V) chloride / polyethylenglycole(NbCl5.PEG) and niobium(V)chloride (NbCl5) as available and inexpensive catalysts. The quinoline derivatives were prepared in glycerol, an excellent solvent in terms of environmental impact, with high yields (76-98%) and short reaction times (15- 90 min). Not only diketones but also ketones afforded the desired products in good to excellent yields. The reaction time of 2-amino-5-chlorobenzophenone and dicarbonyl compounds was longer than those of 2-aminobenzophenone. The reaction of cyclic diketones took place faster than open chain analogues. These reactions also proceeded with acetophenone derivatives. In these cases the reaction times are longer.

Graphical Abstract

Efficient procedure for the synthesis of quinoline derivatives by NbCl5.PEG and NbCl5 in glycerol as green solvent

Keywords

Main Subjects

[1] M.P. Maguire, K.R. Sheets, K. McVety, A.P. Spada, A.J. Zilberstein. Med. Chem., 1994, 37, 2129-2137.
[2] A.V. Malkov, M.A. Kabeshov, M. Bella,
O. Kysilka, D.A. Malyshev, K. Pluhackova,
P. Kocovsky, Org. Lett., 2007, 9, 5473-5476.

[3] M.A.E. Shaban, M.A.M. Taha, E.M. Sharshira, Adv. Heterocycl.Chem., 1991, 52, 1-153.

[4] G.D. Yadav, P.K. Rahul, H. Saumydeep. International Review of Chemical Engineering., 2012, 4, 597-607.

[5] N.D. Heindel, T.A. Brodof, J.E. Kogelschatz, J Heterocycl. Chem., 1966, 3, 222-223.

[6] W. Pfitzinger, J Prakt. Chem., 1886, 33, 100-100.

[7] a) E.A. Fehnel, J. Org. Chem., 1966, 31, 2899-2902; b) A. Bañón-Caballero, G. Guillena, C. Nájera, J. Org. Chem., 2013, 78, 5349-5356; c) J. Marco-Contelles, E. Pe´rez-Mayoral, A. Samadi, M. Carmo Carreiras, E. Soriano. Chem. Rev., 2009, 109, 2652-2671; d) Q. Shen, L. Wang, J. Yu, M. Liu, J. Qiu, L. Fang, F. Guo, J. Tang, Synthesis, 2012, 44, 389-392.
[8] E. Roberts, E.E. Turner, J. Chem. Soc., 1927, 1832-1857.
[9] J.S. Yadav, P.P. Rao, D. Sreenu, R.S. Rao, V.Kumar, K. Nagaiah, A.R. Prasad, Tetrahedron Lett., 2005, 46, 7249-7253.
[10] J. Wu, H. G. Xia, K. Gao, Org. Biomol. Chem., 2006, 4, 126-129.
[11] A. Arcadi, M. Chiarini, S.D. Giuseppe, F. Marinelli, Synlett., 2003, 2, 203-206.
[12] M. Zhu, W. Fu, C. Xun, G. Zou, Bull. Korean Chem. Soc., 2012, 33, 43-47.
[13] S.J. Song, S.J. Cho, D.K. Park, T.W. Kwon, S.A. Jenekhe, Tetrahedron Lett., 2003, 44, 255-257.

[14] S.A. Palimkar, S.A. Siddiqui, T. Daniel, R.J. Lahoti, K.V. Srinivasan, J. Org. Chem., 2003, 68, 9371-9378.

[15] A. Wolfson, C. Dlugy, Y. Shotland, Environ Chem. Lett., 2007, 5, 67-71.
[16] K. Suzuki, T. Hashimoto, H. Maeta, T. Matsumoto, Synlett., 1992, 125-128.
[17] J. Howarth, K. Gillespie, Tetrahedron Lett., 1996, 37, 6011-6012.
[18] C. Kleber, Z. Andrade, G.R. OliveiraTetrahedron Lett., 2002, 43, 1935-1937.
[19] M. Aresta, A. Dibenedetto, P. Stufano, B. Maria Aresta, S. Maggi, I. Papai, T.A. Rokob, B. Gabriele. Dalton Trans., 2010, 39, 6985.
[20] M.A. Zolfigol, P. Salehi, A. Ghaderi, M. Shiri, Z. Tanbakouchian, Journal of Molecular Catalysis A: Chemical., 2006,  259, 253-258.
[21] C. Gisela, M. Mariela, P. Juan, M. Bruno. Tetrahedron Letters., 2006, 47, 8811-8815.
[22] J.S. Yadav,  B.V.S. Reddy, P. Sreedhar, R. SrinivasaRao, K. Nagaiah, Synlett., 2004,  2381-2385.
[23] G. Kempter, P.Z. Klug. Chem., 1971, 61, 3916-3919.
[24] M. Narasimhulu, T. Srikanth Reddy, K.Chinni Mahesh, P. Prabhakar, C. Bhujanga Rao, Y. Venkateswarlu. J. Mol. Catal. A: Chem., 2007, 266, 114-117.
[25] M.A. Zolfigol, P. Salehi, A. Ghaderi,  M. Shiri.  Catal.Commun., 2007,  8, 1214-1218.
[26] G. Karthikeyan, P.T.  Perumal.  J. Heterocyclic Chem., 2004, 41, 1039-1041.